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Abstract

A numerical mass transfer analysis for plane and square duct geometries for developing and fully-developed scalar

transport with laminar flow is described. A methodology for prescribing stream-wise periodic scalar boundary condi-

tions under conditions of constant-transformed-substance state, is detailed. The solution to the fully-developed mass

transfer problem is presented in terms of driving force, blowing parameter and normalised conductance. A suitably-

defined polarisation factor is shown to be functionally equivalent to the former. The data compress onto a single curve

with good correspondence to the 1-D convection–diffusion solution, except for high rates of wall injection or suction.

� 2005 National Research Council of Canada. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

There are a number of situations where mass transfer

in ducts is an important consideration, e.g. in fuel cells

and membrane separation devices. Computational fluid

dynamics (CFD) can solve the governing transport

equations, however a problem arises; when large num-

bers of channels are present, an enormous geometric

mesh is required. One solution is to replace diffusive

terms with rate terms, according to,

j00 ¼ �Co/=oyjw ¼ gð/w � /bÞ ð1Þ

where /w and /b are wall and bulk values of mass frac-

tion (or enthalpy). Variations in the conductance, g, as a

function of geometry and mass transfer rate, _m00, need to

be accounted-for: In contrast to external problems, these

are not well-characterised for internal flows, in the liter-

ature. Three possible approaches are (a) theoretical
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analysis, (b) fine-scale numerical calculation, or (c)

experimental data/empirical correlation. Cases (a) and

(b) are considered here. Let it be supposed [1] that

_m00 ¼ gB ð2Þ

where B = (/b � /w)/(/w � /t) is a driving force and /t

is the value of / at the transferred-substance or t-state.

Alternatively in terms of blowing parameter, b

_m00 ¼ g�b ð3Þ

where g* is the value of g as _m00 ! 0.

In the present work, mass transfer in ducts is ana-

lysed using a numerical integration scheme. The scope

of the problem is confined to Fickean diffusion, for lam-

inar flow with constant properties, negligible dissipation,

and Lewis number of unity. Soret (and Dufour) thermo-

diffusion effects are neglected. Most theoretical hydrody-

namic analyses are for plane ducts, Fig. 1(a). Berman [2]

obtained a solution for fully-developed flow in a plane

channel with injection/suction at both walls. Injection

at only one wall, Fig. 1(b), was considered in [3,4] and
Canada. Published by Elsevier Ltd. All rights reserved.
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Fig. 1. Boundary conditions for three problems considered in

this study.

Nomenclature

C source term coefficient

Dh hydraulic diameter (m)

g conductance Co//oyjw/(/b � /w) (kg/m
2s)

j00 rate of transfer of //m2

L length (m)

u stream-wise velocity (m/s)

v cross-wise velocity (m/s)

V source term value

H height, half-height (m)

_m00 rate of mass transfer (kg/m2s)

p pressure (Pa)

S source term, C(V � /P)

Greek symbols

/ scalar variable

C exchange coefficient (kg/ms)

l viscosity (kg/ms)

q density (kg/m3)

Non-dimensional numbers

B driving force (/b � /w)/(/w � /t)

b blowing parameter _m00=g�

cf friction factor lou=oyjw= 1
2
qu2b

Sh/Nu Sherwood/Nusselt number gDh/C
Pe Peclet number qDhvw/C
Pew Wall Peclet number 1

4
qDhvw=C

Re Reynolds number qDhu/l
Rew Wall Reynolds number 1

4
qDhvw=l

Sc/Pr Schmidt/Prandtl number C/l
U polarisation (/w � /b)/(/b � /t)

n non-dimensional distance
1
3
ðvw=ubð0ÞÞð4x=DhÞPe2w

Superscripts

* for zero mass transfer
0 per unit length

. per unit time

Subscripts

0 inlet condition

b bulk

cell cell

t transferred-substance state

w wall
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elsewhere. Numerical solutions were reported in [5,6], a

review of flow in porous ducts is found in [7]. Work on

mass/heat transfer have also been primarily concerned

with planar geometry, often for suction; of interest in

membrane science. Sherwood et al. [8–10] considered
mass transfer for reverse osmosis based on [2] (for mathe-

matical details see Appendix A). Numerical studies of

heat and mass transfer have also been reported [11–19].

In this study, calculations are performed for the cases

shown in Fig. 1(a–c). The equations solved are of the

form [20],

divðq~u/Þ ¼ divCgrad/þ _S
000 ð4Þ

These are integrated to obtain finite-volume equations

having the form,
P

anbð/nb � /PÞ þ S ¼ 0, where /nb

is the �neighbour� value to cell �P� [20]. Source terms

are linearised; S = C(V � /P), where C is a �coefficient�
and V is a �value�. Three types of wall boundary condi-

tions are anticipated: (i) prescribed /w, (ii) prescribed

/t, (iii) fixed flux, j00. For (i) V = /w, the coefficient, C,

is computed using an �exponential scheme�. For case

(ii) with injection, a linearised source, C ¼ _m00Acell,

V = /t is prescribed; however for suction; a fixed source
_S ¼ _m00Acellð/t � /PÞ is set, to avoid the creation of neg-

ative C-coefficients [20]. Often /t = 1; however for mem-

brane transport with incomplete rejection /t < 1; and for

heterogeneous chemical reactions �1 6 /t 6 1. Previ-

ous authors [11–14,19] considered heat/mass transfer

problems for fixed wall-value or flux. Typically, the

value/flux, will not be constant, due to convection, and

the constant t-state prescription, as given here, is reason-

able under many circumstances. Note that as _m00 ! 0,

constant t-state approaches constant wall flux condition.
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Three inlet conditions were considered: (a) constant

scalar / = /0, (b) prescribed velocity profiles [2] for case

(1), and (c) �periodic� boundary conditions, where values

at x = L/2 are back-substituted as illustrated in Fig. 1(d);

u-values are scaled by ub(0)/ub(L/2). For scalar trans-

port, it is presumed that (/ � /w)/(/b � /t) is constant,

and inlet values of /, are computed from those at

x = L/2, and then scaled to yield the prescribed bulk

inlet value [21],

/ð0; yÞ ¼ c1/ðL=2; yÞ þ c2 ð5Þ

where c1 = (/b(0) � /w(0))/(/b(L/2) � /w(L/2)) and

c2 = /w(0) � c1/w(L/2). The upstream wall value must

be computed, /w(0) = (/b(0) + B/t)/(1 + B), where

B = B(L/2). At x = L, a constant pressure was pre-

scribed. The code PHOENICS was used to perform

the calculations.
Fig. 3. Fully-developed normalised conductance as a function

of blowing parameter and driving force.
2. Results and discussion

Fig. 2 is a comparison of the present work with Sher-

wood et al. [8] for developing scalar transport, fully-

developed flow, Pew = �2, �3.7 and �14.8. The results

are presented in terms of a polarisation, U, defined by,

U ¼ ð/w � /bÞ=ð/b � /tÞ ð6Þ

as a function of non-dimensional distance, n, defined in

the nomenclature. Also shown are �fully-developed� re-
sults based on Eq. (5). These are asymptotic solutions

in the limit, jnj � 0. For large negative Pew (strong suc-

tion) this condition may never be reached.

Sherwood et al. defined a concentration polarisation

for the considered phase as the quantity /w//b � 1. This

is equivalent to Eq. (6) with /t = 1 for the transferred

phase: however there are many situations where

/t 5 1; reverse-osmosis with incomplete rejection, heter-

ogeneous chemical reactions, and sensible heat transfer

where /t is the ambient (enthalpy/temperature) value.

Under these circumstances U, as defined in Eq. (6), is
Fig. 2. Developing scalar polarisation for case (a).
invariant. It can be shown that 1/B + 1/U = �1, so the

polarisation and driving force are functionally equiva-

lent. Tests confirmed that regardless of the choice of

/t; identical B and U characteristics were obtained.

Fig. 3 shows g/g*, as a function of B and b, for fully-

developed scalar transport, Fig. 1(a)–(c). For case (3),

these are based on an average value of /w. The solid

lines are the 1-D convection–diffusion solution. An esti-

mate for g may be made, given the 1-D solution and g*,

obtained from Sh* = 8.23, 5.38, and 2.71, respectively

[22]. NB: for scalar transport b = 4Pew/Sh* where

Sh* = g*Dh/C, and Pew = Rew/Sc, and Rew = qDhvw/4l.
Fig. 4 shows U and B as a function of b. The approxi-

mate solution of Sherwood et al, U ¼ 1
3
Pe2w is appropri-

ate only for suction. There is good agreement with the

1-D solution except at high values of b� 0, where the

1-D solution underpredicts B. Similarly U = exp(�b) � 1

overpredicts U for b� 0. The data are compressed to-

wards B = �1 for strong suction, and U = �1 for blow-

ing. Plots of ln(1 + B) or ln(1 + U) vs b, remove this bias

and display a linear form, for �1 6 b 6 + 1. Outside this
Fig. 4. Fully-developed driving force and polarisation as a

function of blowing parameter.
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region non-linearities are observed; However, the three

data sets all fall onto a single characteristic curve of B

vs b. If, however there are variations in the Sc/Pr, signif-

icant departures from this characteristic are anticipated.

The main-flow Re varies continuously as ub changes

with x, however a �fully-developed� hydrodynamic re-

gime is observed downstream, where cf ¼ sw= 1
2
qu2bðxÞ

is constant. NB: With c�f ¼ a=Re and g/qub = cf /2, it fol-

lows that b = 8Rew/a. Fig. 5 shows cf as a function of b,

for momentum transfer. The cf=c�f data do not compress

on a single characteristic curve. The straight line is ob-

tained from Berman�s [2] linear perturbation solution

(see Appendix A). For case (a) injection; 1
2
qu2b and hence

pressure gradient increase, however cf=c�f decreases,

since ou/oy must decrease at both walls. The profile is

qualitatively similar to g/g* for scalar transport, Fig. 3.

Cases (b) and (c) are different: for (b) a decrease in

ou/oy at one wall is accompanied by an increase at the

opposite wall, and cf=c�f increases for sufficiently strong

injection. This behaviour is pronounced for case (c)

where momentum transfer occurs at all four walls, and

was noted by Yuan et al. [19] who included reversible

(pressure) losses in their definition of cf. Although there

are large apparent changes in cf=c�f , the blowing param-

eter for momentum transfer, b, is generally very small.

Comparison of pressure coefficient, u and v-velocity pro-

files with [2] were quite satisfactory [23]. The assumption

of constant downstream pressure will lead to localised

errors as the blowing parameter, b, becomes large in

magnitude, and secondary (cross-wise) pressure gradi-

ents arise in addition to stream-wise gradients. These

errors are local and do not affect the results presented,

as the downstream region was discarded.

Standard mass transfer techniques are well suited to

this class of internal-flow problem, despite pressure vari-

ations, heat and mass transfer problems are to be con-

sidered identical for the problem Fig. 1(a). However,

heat transfer boundary conditions may be different for
Fig. 5. Fully-developed normalised friction coefficient as a

function of blowing parameter.
cases (b) and (c) in that mass transfer occurs at only

one boundary, whereas heat transfer may occur simulta-

neously at the other walls [19,22] if the thermal conduc-

tivity of the solid walls is sufficiently large and there are

external temperature gradients.
3. Conclusions

Numerical calculations were performed for fluid

flow, and scalar transport in the passages of plane and

square ducts under constant t-state boundary condi-

tions. Both developing and fully-developed inlet condi-

tions were considered. The back-substitution process

allows fully-developed flow for arbitrary geometry to

be prescribed. The effects of injection are to decrease sca-

lar transfer conductance, while increasing the pressure

gradient. Suction has the opposite effects. The influence

on the friction coefficient is more complex; suction al-

ways increases friction, whereas injection may either de-

crease or increase friction, depending on geometry and

boundary conditions. A fully-developed situation is

always attained except for large negative Pew. Heat/mass

transfer conductances and friction coefficients are signif-

icantly affected by mass transfer at the wall. An appro-

priate independent variable for the correlation of mass

transfer in ducts is the blowing parameter, b. For many

ducts a reasonable engineering approximation for the

conductance is obtained from a 1-D analysis, as ob-

served for many external flow problems. For large (neg-

ative or positive) values of b, a 1-D analysis is not

appropriate, however the g/g* data still compress on a

single b-curve for the three geometries considered in this

study.
Appendix A. Theoretical considerations

Berman�s [2] equations may be written as follows:

u
ub

¼ 3

2
1� y

H

� �2
� �

1þ Rew
420

2� 7
y
H

� �2

� 7
y
H

� �4
� �� �

ðA:1Þ

v
vw

¼ y
2H

3� y
H

� �2
� �

þ Rew
280

y
H

� �
2� 3

y
H

� �
þ y

H

� �6
� �

ðA:2Þ

where ub(x) = ub(0) � vwx/H is the local bulk velocity.

Since c�f ¼ 24=Re, the friction coefficient is obtained as

cf
c�f

¼ 1� Rew
35

� �
¼ 1� 3

35
b

� �
ðA:3Þ

In the limit Rew ! 0, the simplified form of Berman�s
equations is obtained,
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u
�u
¼ 3

2
1� y

H

� �2
� �

ðA:4Þ

v
vw

¼ y
2H

3� y
H

� �2
� �

ðA:5Þ

Sherwood et al. [8,9] considered numerical solutions to

the equation;

qu
o/
ox

þ qv
o/
oy

¼ o

oy
C
o/
oy

ðA:6Þ

These were obtained as

/ ¼
X1
n¼0

BnY n 1� vw
ubð0Þ

x
H

� �ð2=3bn�1Þ

ðA:7Þ

Values of bn,Yn(y/H) and Bn are given in [16] for

Pew = �2.0, �3.7 and �14.8. Dresner [17] suggests that

in the entrance region of the duct, near the wall, Eqs.

(A.4) and (A.5) may be expanded in a Taylor series

about y = H, i.e., u=�u ¼ 3ð1� y=HÞ, v/vw = y/H. Substi-

tution into Eq. (A.6) yields,

g
o~/
on

� o~/
og

¼ o2~/
og2

ðA:8Þ

where ~/ ¼ ð/� /wÞ=ð/w � /tÞ, n ¼ 1
3
ðvw=�u0Þð4x=DhÞ�

Pe2w, and g = Pew(1 � y/H). The solution is of the form
~/ ¼ ~/ðn; gÞ. Since B ¼ ~/ð/ ¼ /bÞ is not a function of

g; B = B(n) or U = U(n), alone. In practice there may

be some deviation in the velocity profile, and the data

may not compress onto a single characteristic between

the entrance and fully-developed zones.
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